

CCNA 1 - TPs

Théorie des réseaux

Auteurs: PAPIN Nicolas, DRONY Matthieu et VERNERIE Matthieu Relecture: ROBIN Eric et PAPIN Nicolas
Version 2.6 – 26 Janvier 2006

SUPINFO - Ecole Supérieure d'Informatique de Paris

23. rue de Château Landon 75010 Paris Site Web : http://www.supinfo.com

Laboratoire SUPINFO des Technologies Cisco

Site Web : www.labo-cisco.com – E-mail : labo-cisco@supinfo.com Ce document est la propriété de SUPINFO et est soumis aux règles de droits d'auteurs

Table des matières

Chapitre 1 – Introduction aux réseaux	3
Configuration Matériel	
Conversions	4
Chapitre 2 – Modèles OSI et TCP/IP	6
Compréhension et mémorisation	
Chapitre 3 – Couche 1 : Médias et équipements réseau	8
Câblage et signaux	
Médias optiques	
Réseaux Wireless	11
Chapitre 4 – Couche 2: Technologies Ethernet	13
Analyse de trames	
Chapitre 5 – Couche 2 : Commutation Ethernet	1/1
Domaines de collision	
Chapitre 6 – Couche 3 : Protocole IP Adressage	
Chapitre 7 – Couche 3 : Subnetting	
Observations et exercices simples	
Etudes de cas	
**	
Chapitre 8 – Couche 3 : Introduction au routage	
Exercices	
Chapitre 9 – Couche 4 : Couche transport	
Numéros de port et flux	27
Chapitre 11 – Couche 6 : Couche présentation	31
Recherches et documentation	
Chapitre 12 – Couche 7 : Couche application	34
Analyse de données	34

CCNA 1 - TPs 3/36

Chapitre 1 – Introduction aux réseaux Configuration Matériel

- On souhaite monter un ordinateur de type PC à partir de pièces détachées, sachant que les besoins sont :
 - o Connectivité Réseau
 - o Connectivité Audio
 - o Connectivité Vidéo
 - o Disque dur interne et externe (la connectique est à votre libre choix)
 - o Possibilité de lecture de média externe (CD, DVD)

Donner ci-dessous les principaux éléments nécessaires à cette configuration :

Configuration	

CCNA 1 - TPs 4/36

Chapitre 1 – Introduction aux réseaux **Conversions**

1) Conversions dans les différentes bases

Complétez les deux tableaux de nombres ci-dessous :

Base	Nombre	Base	Nombre
10	125	2	
10	92	2	
10	27	2	
10	203	2 2 2	
10	255	2	
2	0000 0110	10	
2	0110 0101	10	
2	1000 1110	10	
2	1010 1111	10	
2	1100 0000	10	
16	A1	10	
16	F2	10	
16	E2A	10	
16	3B	10	
16	14D	10	
16	1F	2	
16	2C	2	
16	9E	2	
16	3B	2 2 2	
16	В6	2	

Base	Nombre	Base	Nombre
10	18	8	
10	24	7	
10	44	6	
10	19	5	
10	120	4	
16	80	10	
16	D7	10	
16	3F	10	
16	AD	10	
16	FF	10	
2	0001 0110	16	
2	0010 0101	16	
2	1100 1110	16	
2	1000 1111	16	
2	1100 0011	16	
10	112	16	
10	28	16	
10	236	16	
10	59	16	
10	18	16	

CCNA 1 - TPs 5/36

2) Termes et unités de mesure

•	Quel est l'acronyme désignant un réseau géographiquement limité, et que signifie cet acronyme ?

• Quel est le type de réseau en émergence que l'on retrouve généralement en ville dans les endroits publiques ?

• Quel type de réseau a un besoin énorme en bande passante ?

• Quel type de réseau utilise-t-on avec un périphérique Bluetooth ?

• Quel terme désigne la capacité de débit d'un réseau ?

• Quelle unité utilise-t-on pour mesurer celle-ci ?

• Combien représentent 512 Kbits/s dans l'unité standard utilisée ?

• Un téléchargement se déroule à 37 Ko/s. Le débit théorique de la liaison est de 512 Kbits/s. Quel pourcentage de la bande passante est utilisé ?

Ce document est la propriété de SUPINFO et est soumis aux règles de droits d'auteurs

Chapitre 2 – Modèles OSI et TCP/IP Compréhension et mémorisation

1) Modèle OSI

• Associez au numéro de chaque couche du modèle OSI son nom ainsi que sa fonction principale :

Numéro de couche	Nom	Fonction principale
7		
6		
5		
4		
3		
2		
1		

• Indiquez l'unité de données de protocole pour chaque couche du modèle OSI :

Numéro de couche	PDU correspondant
7	
6	
5	
4	
3	
2	
1	

• Dans le tableau suivant, il faut faire correspondre quelques exemples de protocoles et dispositifs à chacune des couches du modèle OSI :

Numéro de couche	Exemples	Dispositifs
7		
6		
5		
4		
3		
2		
1		

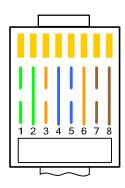
2) Comparaison entre modèles OSI et TCP/IP

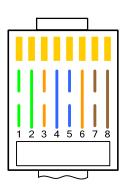

• Donnez la correspondance entre les couches du modèle OSI et celles du modèle TCP/IP :

Couche du modèle OSI	Couche du modèle TCP/IP
Application	
Présentation	
Session	
Transport	
Réseau	
Liaison de données	
Physique	

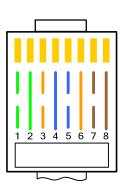
4) Innetia	
	nc
3) Questio	110

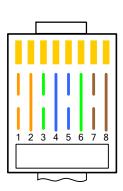
•	Quelles sont les utilités du modèle OSI ?

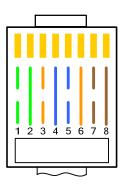

•	Pourquoi existe-t-il deux modèles ?

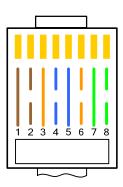


CCNA 1 - TPs 8/36


Chapitre 3 – Couche 1 : Médias et équipements réseau Câblage et signaux


1) Identification des codes couleurs




Les 2 schémas ci-dessus représentent les 2 extrémités d'un câble RJ45 de catégorie 5, face à vous. Identifiez le type de câble.

Les 2 schémas ci-dessus représentent les 2 extrémités d'un câble RJ45 de catégorie 5, face à vous. Identifiez le type de câble.

Les 2 schémas ci-dessus représentent les 2 extrémités d'un câble RJ45 de catégorie 5, face à vous. Identifiez le type de câble.

2) Réalisation d'un câble UTP

- Réalisez au choix l'un des câbles suivants :
 - o Câble droit

CCNA 1 - TPs

- o Câble croisé
- Aidez-vous des codes couleurs normalisés présents dans l'essentiel de cours.
- Testez-le à l'aide d'un testeur de câble, afin de vous assurer du bon fonctionnement de ce dernier.

3) Théorie sur les câbles UTP

Quels app	areils ou équipements p	euvent causer dı	ı bruit sur un s	signal transmis	sur un câble en o	uivre
Quels app	areils ou équipements p	euvent causer du	ı bruit sur un s	signal transmis	sur un câble en d	:ı

4) Vérification de câbles

- Le dB est une unité de mesure permettant de quantifier la variation de puissance d'un signal (aussi appelé le gain). Il est donc utile pour vérifier la qualité d'un câble ou d'une transmission plus généralement (radio ou fibre optique).
- Voici les formules vous permettant d'effectuer tous les calculs :

$$\begin{aligned} G &= 10 \log \left(P_{\text{final}} / P_{\text{init}} \right) & G &= Gain \ en \ dB, \ P &= Puissance \ du \ signal \ en \ Watts \\ G &= 20 \log \left(V_{\text{final}} / V_{\text{init}} \right) & V &= Voltage \ du \ signal \ en \ Volts \\ Inverse \ de \ f(x) &= \log \left(x \right) \ est \ f(y) = 10^y \end{aligned}$$

• A l'aide des formules ci-dessus, compléter le tableau :

Type de média	Signal initial	Signal final	Gain	Cause(s) possible(s)
Câble UTP	1 Volt	2 μV		
Câble STP	5 Volts		3 dB	
Liaison radio	1 mW	2 μW		
Fibre optique	1 mW		-84 dB	

CCNA 1 - TPs 10/36

Chapitre 3 – Couche 1 : Médias et équipements réseau Médias optiques

1) Caractéristiques

• Complétez ce tableau de comparaison entre les modes de transmission monomode et multimode :

Caractéristique	Monomode	Multimode
Source lumineuse utilisée		
Connecteur utilisé		
Nombre de faisceaux lumineux		
Distance maximale		
Lieu(s) d'utilisation		

•	Quels sont les 3 matériaux qui composent un câble en fibre optique et quelle est leur fonction?

Chapitre 3 – Couche 1 : Médias et équipements réseau Réseaux Wireless

1) Généralités

• Donnez les caractéristiques des 3 types de standard de réseaux Wireless IEEE 802.11 actuellement utilisés en remplissant ce tableau :

Norme	Vitesse théorique maximale	Plage de fréquence utilisée
802.11b		
802.11a		
802.11g		

•	Une entreprise dispose actuellement d'un réseau IEEE 802.11b. Celle-ci souhaiterait augmenter la bande
	passante de son réseau sans fil, sans pour autant demander à tous ses utilisateurs clients de changer leurs
	équipements. Quelle norme(s) les nouveaux Access Points devraient supporter pour remplir toutes les
	conditions énumérées précédemment ?

• A quel équipement réseau filaire peut-être assimilé la partie radio d'un	Access Point?
--	---------------

2) Cas d'implémentation

Schéma d'implémentation

- Dans une pièce de 80 mètres de largeur sans obstacles (conditions optimales), votre entreprise souhaite installer un WLAN. vous disposez de 2 Access Points, et le roaming doit être possible.
- Faîtes un schéma représentant l'implémentation, en prenant soin d'indiquer un maximum d'informations :

Quelle lo	ngueur maximale	va-t-on pouvoir	couvrir ?	
Vérifiez	que la zone de roai	ning est assez la	rge:	

CCNA 1 - TPs 13/36

Chapitre 4 – Couche 2 : Technologies Ethernet Analyse de trames

1) Capture de trames

• Voici ci-dessous une capture de trame ARP :

Capture de trames

Frame 1 (60 bytes on wire, 60 bytes captured)

Arrival Time: Aug 23, 2004 10:51:56.093398000 Time delta from previous packet: 0.0000000000 seconds Time since reference or first frame: 0.0000000000 seconds

Frame Number: 1 Packet Length: 60 bytes Capture Length: 60 bytes

Ethernet II, Src: 00:04:23:8b:ac:1b, Dst: ff:ff:ff:ff:ff

Destination: ff:ff:ff:ff:ff:ff (Broadcast) Source: 00:04:23:8b:ac:1b (172.16.104.4)

Type: ARP (0x0806)

Address Resolution Protocol (request) Hardware type: Ethernet (0x0001)

Protocol type: IP (0x0800)

Hardware size: 6 Protocol size: 4

Opcode: request (0x0001)

Sender MAC address: 00:04:23:8b:ac:1b (172.16.104.4)

Sender IP address: 172.16.104.4 (172.16.104.4)

Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)

Target IP address: 172.16.157.63 (172.16.157.63)

2) Analyse de trames

• Quel est le rôle des trames ARP ?

Quelle est la longueur d'une trame ARP?

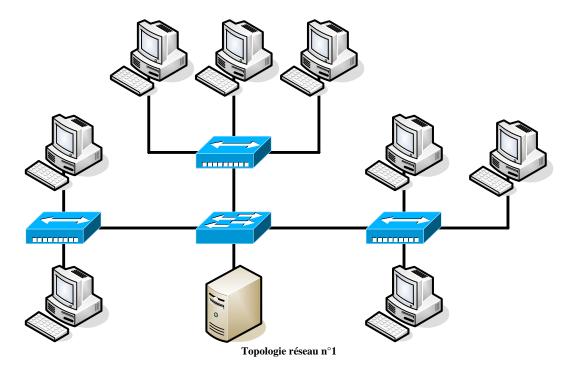
Dans une trame Ethernet, le type de protocole (ARP, TCP, etc.) est précisé et a une valeur en hexadécimal.

Quelle est la valeur hexadécimale représentant le protocole ARP?

• Sur quel protocole de couche 3 reposent les requêtes ARP? Quelle est la valeur hexadécimale le représentant?

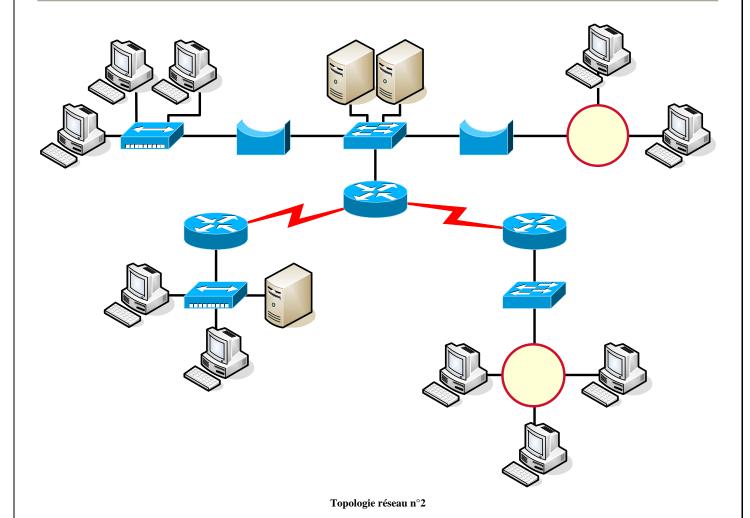
Laboratoire SUPINFO des Technologies Cisco

CCNA 1 - TPs 14/36

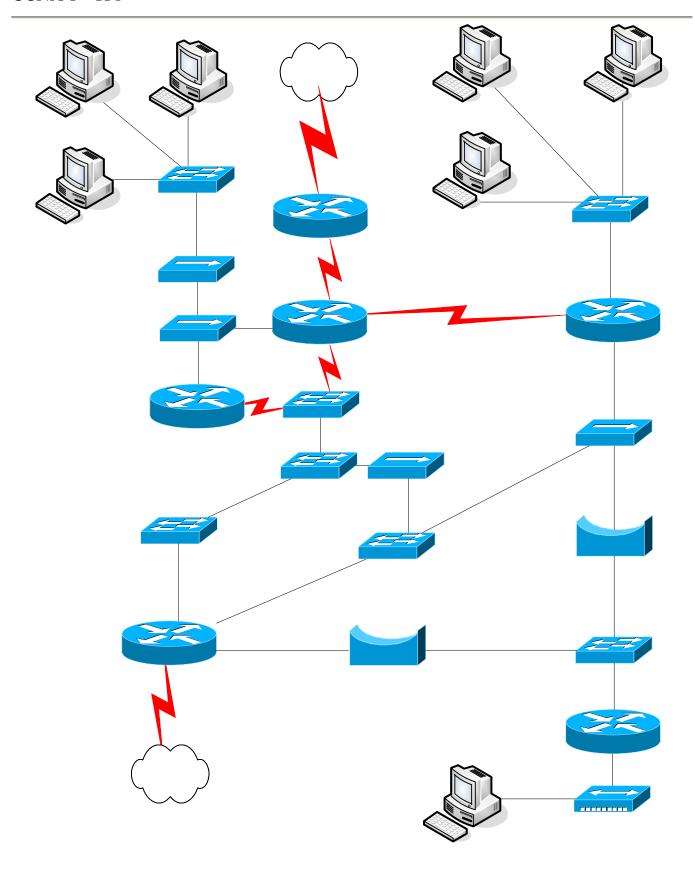

Chapitre 5 – Couche 2 : Commutation Ethernet Domaines de collision

1) Contexte textuel

• Indiquez dans les cas suivants le nombre de domaines de collision résultant :


Contexte	Nombre de domaines de collision
2 stations, un répéteur, 2 stations	
4 stations reliées à un concentrateur ainsi qu'un serveur	
1 concentrateur avec 3 stations, relié à un autre	
concentrateur interconnectant 4 stations	
1 concentrateur avec 4 stations, relié par 1 routeur	
à 1 concentrateur avec 3 stations	

2) Contexte visuel


• Quel est le nombre de domaines de collision dans le réseau ci-dessus :

15 / 36 CCNA 1 - TPs

Quel est le nombre de domaines de collision dans le réseau ci-dessus :

16/36 CCNA 1 - TPs

Topologie réseau n°3

Quel est le nombre de domaines de collision dans le réseau ci-dessus :

Chapitre 6 – Couche 3 : Protocole IP Adressage

1) Résolution d'adresses

• Le tableau ci-dessous montre les adresses IP et MAC de 5 stations interconnectées et faisant partie du même réseau IP :

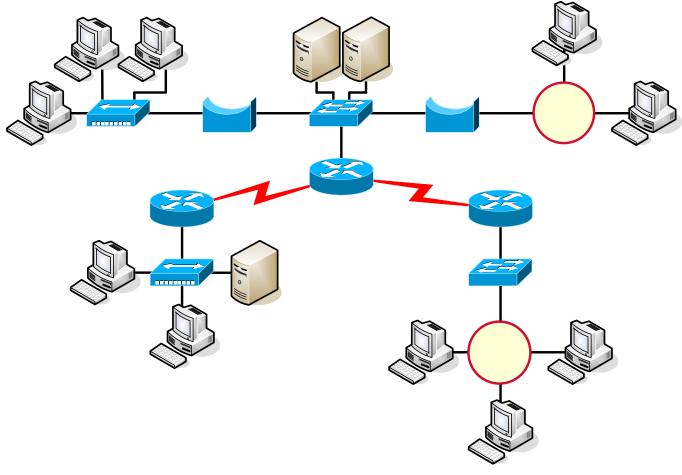
Adresse	Station 1	Station 2	Station 3	Station 4	Station 5
MAC	0028AF86CE51	0028AF86CF51	0028AFG6CD51	0028AF86CFF1	0028AF86CD1
IP	126.0.0.128	126.0.0.213	126.0.0.317	126.0.0.244	126.0.0.99

• Relevez les 3 erreurs existant dans les adresses de ces 5 stations :

Station		
Problème avec		
explications		

2) Classes d'adresses

• Complétez le tableau suivant :


Adresse IP	Classe	Privée/publique/réservée ?
10.0.3.45		
	В	Privée
121.34.0.34		
134.156.87.5		
192.168.0.2		
	D	Réservée
221.12.21.75		
172.16.8.3		
	С	Privée
127.0.0.1		
	Е	Réservée

• Parmi les adresses du tableau suivant, quelles sont celles pouvant être attribuées par un FAI ?

Adresse	Attribuable par un FAI?
10.0.1.2	
115.3.4.5	
244.0.1.7	
151.34.65.2	
127.34.78.2	
172.23.89.23	
181.45.63.89	
192.168.34.73	

18 / 36 CCNA 1 - TPs

3) Domaines de broadcast

Topologie réseau n°1

Combien y a-t-il de domaines de broadcast dans le réseau ci-dessus ?

CCNA 1 - TPs 19/36

Chapitre 7 – Couche 3 : Subnetting Observations et exercices simples

4	\sim	1	4 •	
1		bser	เข า ti	nnc
_	\cdot	DOCI	v au	OILO

• Combien de bits ont été empruntés à la partie hôte pour la partie sous-réseau ?

• Combien de sous-réseaux utilisables avons-nous à notre disposition dans ce contexte ?

• Considérons le réseau 192.168.33.0. Nous utilisons le masque de sous-réseau /28. Quelles sont, parmi les suivantes, les adresses IP utilisables pouvant être attribuées à des hôtes ?

Adresse IP	Utilisable?	Si non, pourquoi ?
192.168.33.3		
192.168.33.15		
192.168.33.16		
192.168.33.17		
192.168.33.63		
192.168.33.65		

- Considérons une station d'un réseau ayant pour adresse IP 134.157.130.45.
- Quelle est la classe d'adresse utilisée ?

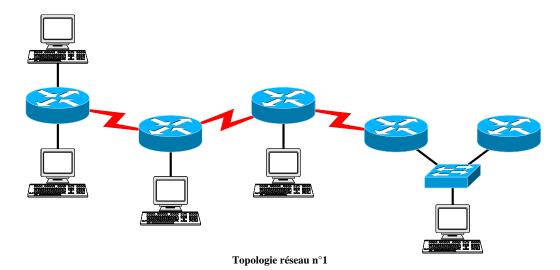
• Le masque de sous-réseau étant 255.255.255.128, combien de sous-réseaux peuvent être utilisés ?

• Quelle est l'adresse de sous-réseau pour cette station ?

2) Exercices simples

• Un ordinateur a pour adresse IP 136.14.2.174/28. Est-ce que cette IP est valide et quelle est l'adresse du sous-réseau de cette station ?

• Un ordinateur a pour adresse IP 10.1.35.14/17. Est-ce que cette IP est valide et quelle est l'adresse de broadcast de cette station ?


• Une interface de routeur a pour IP 192.168.17.3/30. Est-ce que cette IP est valide et quelle est l'adresse du sous-réseau pour cette interface de routeur ?

CCNA 1 - TPs 20 / 36

Chapitre 7 – Couche 3 : Subnetting Etudes de cas

1) Cas n°1

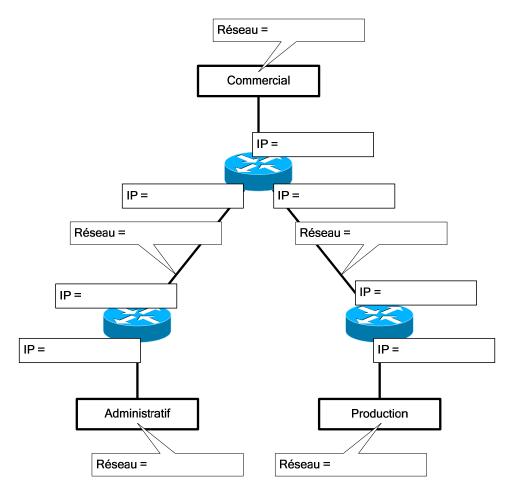
- Nous allons utiliser la classe d'adresse 192.168.1.0/24 pour ce cas.
- Combien de sous-réseaux doit-on créer au minimum ?
- Combien de bits doit-on emprunter à la partie hôte et combien de sous-réseaux seront ainsi créés ?
- Quel est le masque de sous-réseau ainsi créé ?
- Nous allons utiliser la classe d'adresse 192.168.1.0/24.
- Complétez enfin le tableau d'attribution des plages d'adresses :

Sous-réseau	IP de sous-réseau IP de broadcast	Plage d'adresses utilisables
LAN n°1		
LAN n°2		
LAN n°3		
LAN n°4		
LAN n°5		
WAN n°1		
WAN n°2		
WAN n°3		

CCNA 1 - TPs 21/36

2) Cas n°2

- Une entreprise dispose d'un réseau Ethernet avec 60 hôtes, supportant le protocole TCP/IP.
- Les informations dont nous disposons sur ce réseau sont :
 - o Classe d'adresse utilisée : 193.250.17.0
 - o 3 départements : Administratif, commercial et production
 - Ces départements sont reliés à l'aide de routeurs (2 liaisons WAN)
- Les contraintes pour ce réseau sont les suivantes :
 - o Chaque département doit avoir son propre sous-réseau.
 - Certaines stations du département de production utilisées sur les chaînes de montage ont déjà une plage d'adresses IP à ne pas modifier (attribuée statiquement). Celle-ci va de 193.250.17.110 à 193.250.17.117.
 - o Le département administratif contient 25 hôtes, le département commercial 15 et le département production 20.


•	Proposez un masque de sous-réseau en justifiant votre choix :		
•	Calculer le nombre total d'adresse IP disponibles pour l'adressage d'hôtes que peut contenir chaque sous réseau :		

• Complétez le tableau d'attribution des sous-réseaux :

Sous-réseau	IP de sous-réseau IP de broadcast	Plage d'adresses utilisables	Quelles adresses doivent être configurées sur le DHCP
Administratif			
Commercial			
Production			
Liaison WAN n°1			
Liaison WAN n°2			

CCNA 1 - TPs 22 / 36

3) Complétez le schéma suivant :

4) Cas n°3

- Une entreprise dispose d'un parc informatique de 600 machines réparties équitablement dans 6 services.
- Nous voulons construire l'architecture réseau sur une seule classe d'adresses IP. De plus chaque service doit accéder à des ressources spécifiques dont les autres services ne devront pas disposer.
- Quelle classe d'adresses allez-vous employer ?

• Expliquez, notamment par le calcul, quel masque de sous-réseau vous allez utiliser pour répondre aux contraintes de l'énoncé :

• Complétez le tableau d'attribution des sous-réseaux :

Sous-réseau n°1	
Sous-réseau n°2	
Sous-réseau n°3	
Sous-réseau n°4	
Sous-réseau n°5	
Sous-réseau n°6	

Chapitre 7 – Couche 3 : Subnetting Exercices Supplémentaires

1) Exercices de subnetting

Rappel : pour répondre aux questions suivantes vous devrez utiliser la règle du 2ⁿ-2 pour la création des sous-réseaux, et toujours utiliser les masques de sous-réseaux les plus optimaux.

-	
	n souhaite subdiviser le réseau de classe A 10.0.0.0 /8 en 502 sous-réseaux égaux. Quel est le asque de sous-réseau à utiliser ?
	n souhaite subdiviser le réseau de classe C 192.168.5.0 /24 en 4 sous-réseaux égaux. Quel es asque de sous-réseau à utiliser ?
	n souhaite subdiviser le réseau de classe B 172.16.0.0 /16 en sous-réseaux de 20 hôtes chacus uel est le masque de sous-réseau à utiliser ?
	n souhaite subdiviser le réseau de classe C 192.168.4.0 /24 en sous-réseaux de 80 hôtes chac uel est le masque de sous-réseau à utiliser ?
	n souhaite subdiviser le réseau de classe A 21.0.0.0 /8 en sous-réseaux de 500 hôtes chacun. uel est le masque de sous-réseau à utiliser ?
-	n souhaite subdiviser le réseau de classe A 21.0.0.0 /8 en sous-réseaux de 12 hôtes chacun. Q

On souhaite que les adresses IP : 192.168.1.23 /24, 192.168.1.24 /24, 192.168.1.25 /24, soien le même sous-réseau. Quel est le masque de sous-réseau à utiliser ?
On souhaite que les adresses IP : 192.168.1.30, 192.168.1.31, 192.168.1.32, soient sur le mêr sous-réseau. Quel est le masque de sous-réseau à utiliser ?
Citez ci-dessous les plages d'adresses (première et dernière adresse IP de chaque sous-réseau obtenues en subdivisant le réseau de classe C 192.168.1.0 /24 avec le masque de sous-réseau suivant : 225.255.255.224.
On souhaite subdiviser le réseau de classe A 25.0.0.0 /8 en 4 sous-réseaux de 80 hôtes chacur Plusieurs masques de sous-réseaux peuvent être utilisés, faites-en la liste ci-dessous :
On souhaite subdiviser le réseau de classe C 192.168.10.0 /24 en 2 sous-réseaux de 50 hôtes chacun. Quel est le masque de sous-réseau à utiliser ?
On souhaite subdiviser le réseau de classe C 192.168.10.0 /24 en 3 sous réseaux de 50 hôtes chacun. Quel est le masque de sous-réseau à utiliser ?

CCNA 1 - TPs 25 / 36

2) Exercices Supplémentaires

• Déterminez les plages d'adresses auxquelles appartiennent les adresses IP suivantes et indiquez si l'adresse en question est : une adresse d'hôte, une adresse réseau ou une adresse de broadcast.

Classe A:

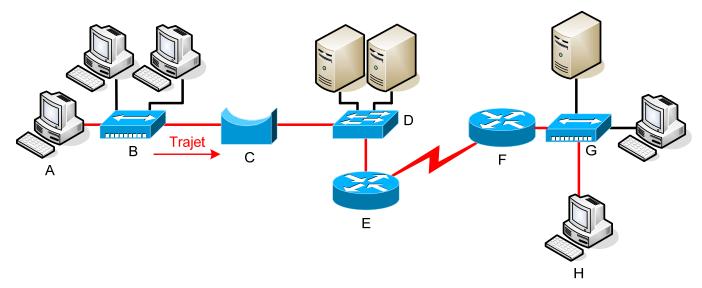
- 10.35.177.132 /19
- 10.164.0.0 /11
- 10.244.137.111/10
- 10.162.255.255 /12
- 10.19.255.255 /15
- 10.141.215.63 /14
- 10.15.72.32 /20
- 10.123.2.255 /13
- 10.0.0.0 /15
- 10.172.12.144 /12
- 10.37.88.101 /6

Classe B:

- 172.16.67.255 /22
- 172.16.14.217 /25
- 172.16.153.129 /19
- 172.16.149.93 /20
- 172.16.161.35 /21
- 172.16.52.0 /23
- 172.16.172.138 /22
- 172.16.255.255 /18
- 172.16.178.208 /28
- 172.16.31.93 /26
- 172.16.207.255 /20
- 172.16.33.252 /23

Classe C:

- 192.168.1.224 /28
- 192.168.2.159 /29
- 192.168.1.114/27
- 192.168.3.142/26
- 192.168.2.3 /30
- 192.168.4.225 /28
- 192.168.3.184/29


Laboratoire SUPINFO des Technologies Cisco

CCNA 1 - TPs 26 / 36

Chapitre 8 – Couche 3 : Introduction au routage Exercices

1) Cas d'études

La station A désire communiquer avec la station H:

Complétez le tableau avec les bonnes adresses de couche 2 et 3 :

	Adresse MAC Source	Adresse MAC Destination	Adresse IP Source	Adresse IP Destination
A				
Arrivée sur B				
Départ de B				
Arrivée sur C				
Départ de C				
Arrivée sur D				
Départ de D				
Arrivée sur E				
Départ de E				
Arrivée sur F				
Départ de F				
Arrivée sur G				
Départ de G				
Н				

Laboratoire SUPINFO des Technologies Cisco

 $Site\ Web: www.labo\text{-}cisco.com - E\text{-}mail: labo\text{-}cisco@supinfo.com$

Ce document est la propriété de SUPINFO et est soumis aux règles de droits d'auteurs

CCNA 1 - TPs 27 / 36

Chapitre 9 – Couche 4 : Couche transport Numéros de port et flux

1) Numéros de port

• Voici une liste avec des numéros de port et des noms de protocole. Trouvez le numéro de port ou le protocole correspondant :

Port	Protocole de couche 4	Numéro de port
		21
POP3		
		443
Telnet		
DNS		
		144
		27015
HTTP		
SSH		
		69
		25

• Compléter le tableau avec les plages réservées des ports TCP :

Type d'application	Plage de ports correspondante
Ports assignés par l'IANA	
	Supérieur à 1023

CCNA 1 - TPs 28 / 36

2) Analyse de requête Web

• Une requête Web sur la page http://www.labo-cisco.com (172.16.1.10) a été capturée depuis un ordinateur ayant pour IP 172.16.104.38. Nous allons nous intéresser aux segments TCP et UDP.

Capture – Trafic des requêtes							
No. Time Source Destination Protocol Info							
275 4.892953	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=364 Ack=20441			
Win=52560 Len=	=0						
276 4.893038	172.16.1.10	172.16.104.38	HTTP	Continuation			
277 4.893163	172.16.1.10	172.16.104.38	HTTP	Continuation			
278 4.893200	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=364 Ack=23361			
Win=49640 Len=	=0						
279 4.893286	172.16.1.10	172.16.104.38	HTTP	Continuation			
280 4.893335	172.16.1.10	172.16.104.38	HTTP	Continuation			
281 4.893365	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=364 Ack=25409			
288 5.003410	172.16.104.38	172.16.1.10	TCP	[TCP Dup ACK 281#1] 3073 > http [ACK]			
Seq=364 Ack=25	5409 Win=51352 I	_en=0					
289 5.013453	172.16.1.10	172.16.104.38	TCP	http > 3072 [ACK] Seq=80437 Ack=1373			
Win=16148 Len=	=0						
290 5.013492	172.16.1.10	172.16.104.38	TCP	http > 3073 [ACK] Seq=25409 Ack=364			
Win=17157 Len=	=0						
291 5.022946	172.16.104.38	172.16.1.10	TCP	3072 > http [ACK] Seq=1373 Ack=80437			
Win=63184 Len=	=0						
292 5.027996	172.16.104.38	172.16.1.10	TCP	[TCP Dup ACK 281#2] 3073 > http [ACK]			
Seq=364 Ack=25	5409 Win=64240 I	_en=0					
293 5.040306	172.16.104.38	172.16.1.10	HTTP	GET /images/Charte/WebCisco_05N.gif			
HTTP/1.1							
294 5.041092	172.16.1.10	172.16.104.38	HTTP	HTTP/1.1 200 OK (GIF89a)			
295 5.041184	172.16.1.10	172.16.104.38	HTTP	Continuation			
296 5.041230	172.16.104.38	172.16.1.10	TCP	3072 > http [ACK] Seq=1736 Ack=83045			
Win=64240 Len=	=0						
301 5.053659	62.161.94.199	172.16.104.38	TCP	http > 3074 [SYN, ACK] Seq=0 Ack=1			
Win=17520 Len=	=0 MSS=1460						
302 5.053703	172.16.104.38	62.161.94.199	TCP	3074 > http [ACK] Seq=1 Ack=1 Win=64240			
Len=0							
303 5.054444	172.16.104.38	172.16.1.10	HTTP	GET /images/Charte/CharteWebCisco_06.gif			
HTTP/1.1				-			
304 5.055175	172.16.1.10	172.16.104.38	HTTP	HTTP/1.1 200 OK (GIF89a)			
305 5.055212	172.16.1.10	172.16.104.38	HTTP	Continuation			
306 5.055254	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=732 Ack=27065			
Win=64240 Len=	Win=64240 Len=0						
307 5.059188	172.16.104.38	62.161.94.199	HTTF	P GET			
/hit.xiti?s=59384&p=&hl=16x24x10&r=1024x768xundefinedx32&ref= HTTP/1.1							
308 5.063936	172.16.104.38	172.16.1.10	HTTP	GET /images/Charte/CharteWebCisco_08.gif			

Capture – Requête détaillée Time Source Destination Protocol Info 172.16.1.10 148 4.639100 172.16.104.38 HTTP GET / HTTP/1.1 Frame 148 (351 bytes on wire, 351 bytes captured) Arrival Time: Aug 23, 2004 16:24:10.595293000 Time delta from previous packet: 0.000188000 seconds Time since reference or first frame: 4.639100000 seconds Frame Number: 148 Packet Length: 351 bytes Capture Length: 351 bytes Ethernet II, Src: 00:0a:e6:bb:cf:8d, Dst: 00:e0:18:c3:59:3b Destination: 00:e0:18:c3:59:3b (172.16.1.10) Source: 00:0a:e6:bb:cf:8d (172.16.104.38) Type: IP (0x0800) Internet Protocol, Src Addr: 172.16.104.38 (172.16.104.38), Dst Addr: 172.16.1.10 (172.16.1.10) Version: 4 Header length: 20 bytes Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) $0000\ 00...$ = Differentiated Services Codepoint: Default (0x00)0. = ECN-Capable Transport (ECT): 0 0 = ECN-CE: 0Total Length: 337 Identification: 0x08e4 (2276) Flags: 0x04 (Don't Fragment) 0... = Reserved bit: Not set .1.. = Don't fragment: Set ..0. = More fragments: Not setFragment offset: 0 Time to live: 128 Protocol: TCP (0x06) Header checksum: 0x2f72 (correct) Source: 172.16.104.38 (172.16.104.38) Destination: 172.16.1.10 (172.16.1.10) Transmission Control Protocol, Src Port: 3072 (3072), Dst Port: http (80), Seq: 1, Ack: 1, Len: 297 Source port: 3072 (3072) Destination port: http (80) Sequence number: 1 (relative sequence number) Next sequence number: 298 (relative sequence number) Acknowledgement number: 1 (relative ack number) Header length: 20 bytes Flags: 0x0018 (PSH, ACK) 0... = Congestion Window Reduced (CWR): Not set .0.. = ECN-Echo: Not set ..0. = Urgent: Not set ...1 = Acknowledgment: Set 1... = Push: Set $\dots .0.. = Reset: Not set$0. = Syn: Not set.... ...0 = Fin: Not setWindow size: 64240 Checksum: 0x9668 (correct)

Laboratoire SUPINFO des Technologies Cisco

 $Site\ Web: www.labo\text{-}cisco.com - E\text{-}mail: labo\text{-}cisco@\,supinfo.com$

Ce document est la propriété de SUPINFO et est soumis aux règles de droits d'auteurs

CCNA 1 - TPs 30/36

Hypertext Transfer Protocol GET / HTTP/1.1\r\n Request Method: GET

Accept: */*\r\n

Accept-Language: fr\r\n

Accept-Encoding: gzip, deflate\r\n

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)\r\n

Host: www.labo-cisco.com\r\n Connection: Keep-Alive\r\n Cache-Control: no-cache\r\n

Cookie: ASPSESSIONIDCQTRQQQB=PLCMIDDAPCCHGFEBDBIJFFAI\r\n

 $\r\rangle$ n

Quelle est la	taille de la fenê	etre initiale ?		 	
Pourquoi de	ıx accusés de ré	sception sont p	orésents ?		
Quelle est la	différence entre	e les trames To	CP et UDP ?		

3) Analyse de transmission

- Edward veut transférer un fichier à Bill par Microsoft messenger.
- Le transfert démarre à une vitesse de 115 Kbits/s.
- Pendant le transfert, Bill lance une application peer to peer, gourmande en bande passante.
- Edward voit alors le débit de son envoi diminuer à 25 Kbits/s.
- Il en averti aussitôt Bill qui ferme son application puis termine le téléchargement.
- Expliquer ce qui se passe au niveau du fenêtrage lors des 3 différentes étapes du transfert :

ĽХ	рп	ca	tie	on

CCNA 1 - TPs 31 / 36

Chapitre 11 – Couche 6 : Couche présentation Recherches et documentation

05	le principe de l'algo		
13			

CNA 1 - TPs	32 / 36
2) Qu'est-ce qu'un VPN ? Quel est son principe de fonctionnement,	son utilité ?
PN	son utilite:
poratoire SUPINFO des Technologies Cisco	

CCNA 1 - TPs

33 / 36

CCNA 1 - TPs 34/36

Chapitre 12 – Couche 7 : Couche application Analyse de données

1) Analyse de données

• Une requête Web sur la page http://www.labo-cisco.com (172.16.1.10) a été capturée depuis un ordinateur ayant pour IP 172.16.104.38. Nous allons nous intéresser aux informations HTTP.

Capture – Trafic	c des requêtes					
No. Time	Source	Destination Pro	otocol Info	0		
275 4.892953	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=364 Ack=20441		
Win=52560 Len=	=0					
276 4.893038	172.16.1.10	172.16.104.38	HTTP	Continuation		
277 4.893163	172.16.1.10	172.16.104.38	HTTP	Continuation		
278 4.893200	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=364 Ack=23361		
Win=49640 Len=	=0					
279 4.893286	172.16.1.10	172.16.104.38	HTTP	Continuation		
280 4.893335	172.16.1.10	172.16.104.38	HTTP	Continuation		
281 4.893365	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=364 Ack=25409		
288 5.003410	172.16.104.38	172.16.1.10	TCP	[TCP Dup ACK 281#1] 3073 > http [ACK]		
Seq=364 Ack=25	5409 Win=51352	Len=0				
289 5.013453	172.16.1.10	172.16.104.38	TCP	http > 3072 [ACK] Seq=80437 Ack=1373		
Win=16148 Len=	=0			•		
290 5.013492	172.16.1.10	172.16.104.38	TCP	http > 3073 [ACK] Seq=25409 Ack=364		
Win=17157 Len=	=0					
291 5.022946	172.16.104.38	172.16.1.10	TCP	3072 > http [ACK] Seq=1373 Ack=80437		
Win=63184 Len=	=0					
292 5.027996	172.16.104.38	172.16.1.10	TCP	[TCP Dup ACK 281#2] 3073 > http [ACK]		
Seq=364 Ack=25	5409 Win=64240	Len=0				
293 5.040306	172.16.104.38	172.16.1.10	HTTP	GET /images/Charte/WebCisco_05N.gif		
HTTP/1.1						
294 5.041092	172.16.1.10	172.16.104.38	HTTP	HTTP/1.1 200 OK (GIF89a)		
295 5.041184	172.16.1.10	172.16.104.38	HTTP	Continuation		
296 5.041230	172.16.104.38	172.16.1.10	TCP	3072 > http [ACK] Seq=1736 Ack=83045		
Win=64240 Len=	=0					
301 5.053659	62.161.94.199	172.16.104.38	TCP	http > 3074 [SYN, ACK] Seq=0 Ack=1		
Win=17520 Len=	=0 MSS=1460					
302 5.053703	172.16.104.38	62.161.94.199	TCP	3074 > http [ACK] Seq=1 Ack=1 Win=64240		
Len=0						
303 5.054444	172.16.104.38	172.16.1.10	HTTP	GET /images/Charte/CharteWebCisco_06.gif		
HTTP/1.1						
304 5.055175	172.16.1.10	172.16.104.38	HTTP	HTTP/1.1 200 OK (GIF89a)		
305 5.055212	172.16.1.10	172.16.104.38	HTTP	Continuation		
306 5.055254	172.16.104.38	172.16.1.10	TCP	3073 > http [ACK] Seq=732 Ack=27065		
Win=64240 Len=						
307 5.059188	172.16.104.38	62.161.94.199	HTTP			
/hit.xiti?s=59384&p=&hl=16x24x10&r=1024x768xundefinedx32&ref= HTTP/1.1						
308 5.063936	172.16.104.38	172.16.1.10	HTTP	GET /images/Charte/CharteWebCisco_08.gif		

Ce document est la propriété de SUPINFO et est soumis aux règles de droits d'auteurs

Capture – Requête détaillée Time Source Destination Protocol Info 172.16.1.10 148 4.639100 172.16.104.38 HTTP GET / HTTP/1.1 Frame 148 (351 bytes on wire, 351 bytes captured) Arrival Time: Aug 23, 2004 16:24:10.595293000 Time delta from previous packet: 0.000188000 seconds Time since reference or first frame: 4.639100000 seconds Frame Number: 148 Packet Length: 351 bytes Capture Length: 351 bytes Ethernet II, Src: 00:0a:e6:bb:cf:8d, Dst: 00:e0:18:c3:59:3b Destination: 00:e0:18:c3:59:3b (172.16.1.10) Source: 00:0a:e6:bb:cf:8d (172.16.104.38) Type: IP (0x0800) Internet Protocol, Src Addr: 172.16.104.38 (172.16.104.38), Dst Addr: 172.16.1.10 (172.16.1.10) Version: 4 Header length: 20 bytes Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) $0000\ 00...$ = Differentiated Services Codepoint: Default (0x00)0. = ECN-Capable Transport (ECT): 0 0 = ECN-CE: 0Total Length: 337 Identification: 0x08e4 (2276) Flags: 0x04 (Don't Fragment) 0... = Reserved bit: Not set .1.. = Don't fragment: Set ..0. = More fragments: Not setFragment offset: 0 Time to live: 128 Protocol: TCP (0x06) Header checksum: 0x2f72 (correct) Source: 172.16.104.38 (172.16.104.38) Destination: 172.16.1.10 (172.16.1.10) Transmission Control Protocol, Src Port: 3072 (3072), Dst Port: http (80), Seq: 1, Ack: 1, Len: 297 Source port: 3072 (3072) Destination port: http (80) Sequence number: 1 (relative sequence number) Next sequence number: 298 (relative sequence number) Acknowledgement number: 1 (relative ack number) Header length: 20 bytes Flags: 0x0018 (PSH, ACK) 0... = Congestion Window Reduced (CWR): Not set .0.. = ECN-Echo: Not set ..0. = Urgent: Not set ...1 = Acknowledgment: Set 1... = Push: Set $\dots .0.. = Reset: Not set$0. = Syn: Not set.... ...0 = Fin: Not setWindow size: 64240 Checksum: 0x9668 (correct)

Laboratoire SUPINFO des Technologies Cisco

 $Site\ Web: www.labo\text{-}cisco.com - E\text{-}mail: labo\text{-}cisco@\,supinfo.com$

Ce document est la propriété de SUPINFO et est soumis aux règles de droits d'auteurs

CCNA 1 - TPs 36/36

 $\begin{array}{c} Hypertext\ Transfer\ Protocol\\ GET\ /\ HTTP/1.1\ \backslash r\backslash n \end{array}$

Request Method: GET

Accept: */*\r\n

Accept-Language: fr\r\n

Accept-Encoding: gzip, deflate\r\n

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)\r\n

Host: www.labo-cisco.com\r\n Connection: Keep-Alive\r\n Cache-Control: no-cache\r\n

Cookie: ASPSESSIONIDCQTRQQQB=PLCMIDDAPCCHGFEBDBIJFFAI\r\n

r n

• Quelle instruction HTTP est utilisée pour récupérer une image sur le site ?

Quel est le rôle des trames "Connections" ?

• En faisant un parallèle au protocole TCP, sous quelle forme se présente les acquittements dans les trames HTTP ?

• Quelle est la valeur du cookie envoyé par Xiti ?